Скандий: описание и свойства металла, 2 способа получения, сферы применения и месторождения

Что представляет собой

Скандий – это элемент № 21 периодической системы Д. И. Менделеева:

  • Чистый скандий – почти невесомое вещество серебристого цвета с желтоватым отливом, по которому его можно отличить от других легких металлов.
  • Относится к группе редкоземельных металлов. Первый по атомному номеру не лантаноид из «редкоземельной триады» скандий-иттрий-лантан.
  • Структура кристаллической решетки представлена двумя видами в зависимости от температуры (рубеж – 1336°C).
  • По составу это моноизотоп – скандий-45.

Международное обозначение-символ – Sc (Scandium).

Биологического значения не имеет.

Свойства атома скандия :

200 Свойства атома  
201 Атомная масса ( молярная масса ) 44,955912(6) а.е.м. (г/моль)
202 Электронная конфигурация 1s2 2s2 2p6 3s2 3p6 3d1 4s2
203 Электронная оболочка K2 L8 M9 N2 O0 P0 Q0 R0

Электронная оболочка скандия

204 Радиус атома (вычисленный) 184 пм
205 Эмпирический радиус атома* 160 пм
206 Ковалентный радиус* 170 пм
207 Радиус иона (кристаллический) Sc3+

88,5 (6) пм,

101 (8) пм

(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

208 Радиус Ван-дер-Ваальса 211 пм
209 Электроны, Протоны, Нейтроны 21 электрон, 21 протон, 24 нейтрона
210 Семейство (блок) элемент d-семейства
211 Период в периодической таблице 4
212 Группа в периодической таблице 3-я группа (по старой классификации – побочная подгруппа 3-ей группы)
213 Эмиссионный спектр излучения Спектр_Скандия

Важнейшие соединения:

Оксид скандия Sc2O3, получают при нагревании металла в атмосфере кислорода, а также прокаливанием на воздухе гидроксида, нитрата, карбоната или оксалата скандия. Он представляет собой рыхлый белый порошок или бесцветные кубические кристаллы. После сильного прокаливания Sc2O3 плохо растворяется в концентрированной HCl. При сплавлении с оксидами щелочных и щелочноземельных металлов образует скандиаты, напр., LiScO2. Оксид скандия используют в производстве ферритов, люминофоров, стекла и керамики.
Гидроксид скандия Sc(OH)3, получают обработкой растворов солей скандия щелочами:
Sc(NO3)3 + 3NaOH = Sc(OH)3 + 3NaNO3
Гидроксид скандия можно выделить в виде белого аморфного порошка или в виде бесцветных кубических гранецентрированных кристаллов, а также в виде студнеобразного белого осадка, трудно растворимого в воде.
Амфотерный гидроксид с преобладанием основных свойств, в концентрированных растворах щелочей образует гидроксоскандиаты, например: Na3[Sc(OH)6].

Хлорид скандия ScCl3, получают действием сухого хлора на металлический скандий при нагревании, на сульфиды, карбиды скандия или смесь Sc2O3 c углем. Он представляет собой бесцветные ромбоэдрические кристаллы, растворимые в спирте и гидролизующиеся легче, чем хлориды редкоземельных металлов.
Сульфид скандия Sc2S3, получают действием паров серы на металлический скандий, обработкой сероуглеродом оксида скандия или нагреванием безводного сульфата скандия в атмосфере сероводорода. Sc2S3 — желтое твердое вещество; устойчив на воздухе, гидролизуется кипящей водой:
Sc2S3+6HOH=2Sc(OH)3+3H2S.
Гидриды скандия получают взаимодействием скандия с недостатком (ScH2) или избытком (ScH3) водорода при нагревании. Твердые вещества серого цвета, электропроводны.
Карбид скандия Sc4C3, образуется в виде черных гексагональных кристаллов восстановлением оксида скандия углем при нагревании. Компонент металлокерамики.

Кристаллическая решётка скандия:

500 Кристаллическая решётка
511 Кристаллическая решётка #1 α-скандий
512 Структура решётки Гексагональная плотноупакованная

Кристаллическая решетка скандия

513 Параметры решётки a = 3,309 Å, c = 5,268 Å
514 Отношение c/a 1,592
515 Температура Дебая
516 Название пространственной группы симметрии P63/mmc
517 Номер пространственной группы симметрии 194
521 Кристаллическая решётка #2 β-скандий
522 Структура решётки Кубическая объёмно-центрированная

Кристаллическая решетка скандия_бета

523 Параметры решётки
524 Отношение c/a
525 Температура Дебая
526 Название пространственной группы симметрии Im_ 3m
527 Номер пространственной группы симметрии 229

Как был открыт

Первым в истории науки существование элемента предсказал Дмитрий Менделеев. Он назвал вещество эка-бором, «вычислил» его атомную массу, свойства.

Через девять лет (в 1879 году) гипотезу Менделеева подтвердил шведский ученый Ларс Нильсен.

Он дал элементу имя в честь Скандинавского полуострова, на котором располагается Швеция.

Крупицы металла получили к 1914 году.

Физико-химические характеристики

Редкоземельный металл легок, мягок, но хрупок. Химические свойства скандия типичны для «редких земель»: хорошее взаимодействие с кислотами, проблемная окисляемость на воздухе, парамагнетизм.

Скандий металл

При отсутствии примесей (особенно O2) металл легко обрабатывается.

Свойства атомаНазвание, символ, номер Атомная масса
(молярная масса) Электронная конфигурация Радиус атома Химические свойстваКовалентный радиус Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации
(первый электрон) Термодинамические свойства простого веществаПлотность (при н. у.) Температура плавления Температура кипения Уд. теплота плавления Уд. теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого веществаСтруктура решётки Параметры решётки Отношение c/a Прочие характеристикиТеплопроводность Номер CAS
Скандий / Scandium (Sc), 21
44,955912(6) а. е. м. (г/моль)
[Ar] 3d1 4s2
162 пм
144 пм
(+3e) 72,3 пм
1,36 (шкала Полинга)
0
3
 630,8 (6,54) кДж/моль (эВ)
2,99 г/см³
1 814 K
3 110 K
15,8 кДж/моль
332,7 кДж/моль
25,51 Дж/(K·моль)
15,0 см³/моль
гексагональная (α-Sc)
a=3,309 c=5,268 (α-Sc)
1,592
(300 K) 15,8 Вт/(м·К)
7440-20-2

Общие сведения:

100 Общие сведения  
101 Название Скандий
102 Прежнее название
103 Латинское название Scandium
104 Английское название Scandium
105 Символ Sc
106 Атомный номер (номер в таблице) 21
107 Тип Металл
108 Группа Переходный, редкоземельный металл
109 Открыт Дмитрий Иванович Менделеев, Россия, 11 декабря 1870 г. (предсказан), Ларс Фредерик Нильсон, Швеция, 1879 г.
110 Год открытия 1879 г.
111 Внешний вид и пр. Лёгкий, умеренно мягкий, серебристо-белый металл с характерным жёлтым отливом
112 Происхождение Природный материал
113 Модификации
114 Аллотропные модификации 2 аллотропные модификации скандия:

— α-скандий с гексагональной плотноупакованной кристаллической решёткой,

— β-скандий с кубической объёмно-центрированной кристаллической решёткой

115 Температура и иные условия перехода аллотропных модификаций друг в друга
116 Конденсат Бозе-Эйнштейна
117 Двумерные материалы
118 Содержание в атмосфере и воздухе (по массе) 0 %
119 Содержание в земной коре (по массе) 0,0026 %
120 Содержание в морях и океанах (по массе) 1,5·10-10 %
121 Содержание во Вселенной и космосе (по массе) 3,0·10-6 %
122 Содержание в Солнце (по массе) 4,0·10-6 %
123 Содержание в метеоритах (по массе) 0,00064 %
124 Содержание в организме человека (по массе)

Как представлен на планете

Чистый скандий на Земле не обнаружен.

Он представлен другими формами:

  • Собственные минералы – джервисит и тортвейтит. В составе последнего – химическая формула Sc, Y2Si2O7  – скандия почти половина. Редкость.
  • Чаще это компонент сотни других минералов, железных, урановых руд, углей.

Тонна земной коры содержит 10 граммов скандия.

Это сопоставимо с концентрацией свинца, но извлечение материала усложняет распыленность по литосфере.

Спектральный анализ установил насыщенность скандием некоторых типов звезд.

Месторождения сосредоточены на территории бывшего СССР и Монголии. В России это Якутия, Алтай, Красноярский край, Мурманская область.

Квартет поставщиков сырья на мировой рынок – Китай (91%), Россия, Казахстан, Украина. Как потенциальные игроки рассматриваются Австралия, Бразилия, Канада.

90% скандиевого сырья на мировой рынок поставляет Китай.

Применение

Скандий моноизотопный элемент и на 100 % состоит из атомов скандий-45.

Металлургия

Применение скандия в виде микролегирующей примеси оказывает значительное влияние на ряд практически важных сплавов, так например прибавление 0,4 % скандия к сплавам алюминий-магний повышает временное сопротивление на 35 %, а предел текучести на 65—84 %, и при этом относительное удлинение остаётся на уровне 20—27 %. Добавка 0,3—0,67 % к хрому, повышает его устойчивость к окислению вплоть до температуры 1290°C, и аналогичное но ещё более ярко выраженное действие оказывает на жаростойкие сплавы типа «нихром» и в этой области применение скандия куда как эффективнее иттрия. Оксид скандия обладает рядом преимуществ для производства высокотемпературной керамики перед другими оксидами, так прочность оксида скандия при нагревании возрастает и достигает максимума при 1030 °C, в то же время оксид скандия обладает минимальной теплопроводностью и высочайшей стойкостью к термоудару. Скандат иттрия это один из лучших материалов для конструкций работающих при высоких температурах. Определённое количество оксида скандия постоянно расходуется для производства германатных стёкол для оптоэлектроники.

Сплавы скандия

Главным по объёму применением скандия является его применение в алюминиево-скандиевых сплавах, применяемых в спортивной экипировке (мотоциклы, бейсбольные биты и т. п.) — везде, где требуется высокопрочные материалы. В сплаве с алюминием скандий обеспечивает дополнительную прочность и ковкость. Предел прочности на разрыв у чистого скандия около 400 Мпа (40 кг/мм), у титана например 250—350 МПа, а у нелегированного иттрия 300 Мпа. Применение скандиевых сплавов в авиации и ракетостроении позволит значительно снизить стоимость перевозок и резко повысить надёжность эксплуатируемых систем, в то же время при снижении цен на скандий и его применение для производства автомобильных двигателей так же значительно увеличит их ресурс и частично КПД. Очень важно и то обстоятельство что скандий упрочняет алюминиевые сплавы легированные гафнием. Важной и практически не изученной областью применения скандия является то обстоятельство что подобно легированию иттрием алюминия, легирование чистого алюминия скандием так же повышает электропроводность проводов и эффект резкого упрочнения имеет большие перспективы для применения такого сплава для транспортировки электроэнергии (ЛЭП). Сплавы скандия наиболее перспективные материалы в производстве управляемых снарядов. Ряд специальных сплавов скандия композитов на скандиевой связке весьма перспективен в области конструирования скелета киборгов. В последние годы важная роль скандия (и отчасти иттрия и лютеция) выявилась в производстве некоторых по составу суперпрочных мартенситностареющих сталей, некоторые образцы которых показали прочность свыше 700 кг/мм (свыше 7000 МПа

Сверхтвёрдые материалы

Скандий используется для получения сверхтвёрдых материалов. Так, например, легирование карбида титана карбидом скандия весьма резко поднимает микротвёрдость (в 2 раза), что делает этот новый материал четвёртым по твёрдости после алмаза (около 98,7 — 120 ГПа), нитрида бора (боразона), (около 77—87 ГПа), сплава бор-углерод-кремний (около 68—77 ГПа), и существенно больше чем у карбида бора(43,2 — 52 ГПа), карбида кремния (37 ГПа), микротвёрдость сплава карбида скандия и карбида титана около 53,4 ГПа (у карбида титана например 29,5 ГПа). Особенно интересны сплавы скандия с бериллием, обладающие уникальными характеристиками по прочности и жаростойкости.

Так, например, бериллид скандия (1 атом скандия и 13 атомов бериллия) обладает наивысшим благоприятным сочетанием плотности, прочности и высокой температуры плавления, и может явится лучшим материалом для строительства аэрокосмической техники, превосходя в этом отношении лучшие сплавы из известных человечеству на основе титана, и ряд композиционных материалов (в том числе ряд материалов на основе нитей углерода и бора).

Блеск и нищета элемента № 21 Чем же ценен скандий?

Прежде всего он обладает редким сочетанием высокой теплостойкости с легкостью. Плотность алюминия 2,7 г/см3, а температура плавления 660°С. Кубический сантиметр скандия весит 3,0 г, а температура плавления этого металла 1539°С. Плотность стали колеблется (в зависимости от марки) в пределах 7,5-7,9 г/см3, температуры плавления различаются в довольно широких пределах (чистое железо плавится при температуре 1530°С, на 9° ниже, чем скандий). Сравнение этих важнейших характеристик скандия и двух самых важных металлов современной техники явно в пользу элемента № 21. Кроме того, он    обладает прекрасными прочностными характеристиками, значительной химической и коррозионной стойкостью.

Благодаря этим свойствам скандий мог бы стать важным конструкционным материалом в авиации и ракетостроении. В США была предпринята попытка производства металлического скандия для этих целей, но стало ясно, что скандиевая ракета оказалась бы слишком дорогой. Даже отдельные детали из скандия очень сильно увеличивали ее стоимость.

Пытались найти применение скандию и в металлургии. Рассчитывали использовать его в качестве легирующей добавки к чугуну, стали, титаноалюминиевым сплавам. В ряде случаев были получены обнадеживающие результаты. Например, добавка 1% скандия в алюминий увеличивала прочность сплава в полтора раза. Но и немногие проценты металлического скандия слишком удорожали сплав…

Искали применения скандию и в ядерной технике, и в химической промышленности, но в каждом случае многозначные цифры цены сводили на нет достоинства элемента № 21. Поскольку окись скандия в несколько раз дешевле чистого металла, ее применение в некоторых случаях могло бы оказаться экономически оправданным. У этого невзрачного, очень обыкновенного на вид порошка не было достоинств, столь очевидных, как у самого металла, но с середины 60-х гг. окись скандия используют в составе ферритов для элементов памяти быстродействующих вычислительных машин некоторых типов. Получают окись скандия при комплексной переработке бокситов, оловянных, урановых, вольфрамовых и титановых руд. Сам же скандий (и сплавы на его основе) по-прежнему остается металлом будущего: хорош, конечно, но слишком дорог. Впрочем, специалисты не исключают, что этому металлу в будущем удастся пройти тот же путь, который во второй половине XX в. прошел его сосед по менделеевской таблице — титан.

Дополнительные сведения:

900 Дополнительные сведения
901 Номер CAS 7440-20-2

Технология получения

Извлечение скандия – многоступенчатый затратный процесс:

  1. Первым получают гидрооксид. Для этого отходы вольфрамовых руд обжигают, обрабатывают смесью воды, аммиака и серной кислоты.
  2. Гидроокись обезвоживают (620-730°С).
  3. Полученную окись избавляют от примесей, разделяют по фракциям.
  4. Повышенно чистый материал (оксид металла) получают рафинированием плюс прокаливание.

Второй способ получения предусматривает превращение окиси во фторид:

  • Сырье дважды обрабатывают фтористым водородом.
  • Фтористый скандий восстанавливают металлическим кальцием.
  • Смесь металлического скандия и шлака плавят, разделяют в вакууме.

Для получения продукта чистоты 95%+ задействуют вакуумную дистилляцию.

Рентабелен способ получения скандия из каменноугольной золы и отходов переработки углей в синтетическое жидкое топливо.

Происхождение названия

Л. Нильсон назвал элемент в честь Скандинавии.

Где используется

На практике скандий как металл используется редко. Чаще это сплавы, соединения. Особенно популярен оксид.

Умеренно мягкий, лёгкий редкоземельный металл серебристого цвета с жёлтым отливом - Скандий
Умеренно мягкий, лёгкий редкоземельный металл серебристого цвета с жёлтым отливом – Скандий

Металлургия

Скандий востребован как лигатура, улучшающая характеристики продукции:

  • У алюминиево-магниевых сплавов повышается порог сопротивляемости, текучести.
  • Хромовые, нихромовые становятся устойчивее к окислению. В данном сегменте скандий действует эффективнее иттрия.
  • Компонент сверхтвердых материалов: с карбидом титана, кремния, нитридом бора, бериллием. Твердость повышается кратно.

Оксид скандия входит в состав огнеупора, из которого сделаны емкости для разливки сталей специальных марок. По жаростойкости оставляет позади всех «конкурентов».

Другие отрасли промышленности

Прочностные характеристики скандиевых сплавов, соединений оценены оборонным и гражданским сектором:

  • Оксид металла – основа начинки суперкомпьютеров. Скорость обмена данными увеличивается в разы.
  • Производство стекол для оптоэлектроники и жаростойкой керамики. Здесь используются достоинства оксида металла: минимальная теплопроводность плюс неразрушимость структуры термоударом.
  • Соединение с иттрием – материал номер один для конструкций, функционирующих в экстремальных условиях.
  • Атомщики применяют гидрид и дейтерид как замедлитель нейтронов. Бериллид отражает поток нейтронов (в том числе в ядерных боеголовках).

Это также материал рентгеновских зеркал, автомобилей, воздушных лайнеров, ракет, спутников, солнечных батарей, лазерных компонентов, элементов повышенной светимости.

Радиоактивный изотоп-46 – маркер в нефтепереработке, контролер хода выплавки металлов. Скандий-47 оптимален как источник позитронов.

Непромышленный сегмент

Скандий-46 используют онкологи.

Оксид металла – лучший стабилизатор при производстве фианитов.

Из сплавов с алюминием изготавливают байки, щитки, биты, другое снаряжение для физкультуры, фитнеса, спорта.

Перспективы

Направления использования алюминиево-скандиевых сплавов в будущем:

  • Передача электроэнергии. Такое соединение повышает прочность и пропускную способность электропроводов.
  • Производство самонаводящихся снарядов.
  • Сплавы тестируются как материал остова боевых роботов.

Единственный недостаток, сдерживающий применение металла, – цена.

Химические свойства

Физические свойства:

Скандий — легкий металл с характерным желтым отливом, который появляется при контакте металла с воздухом. Металлический скандий имеет удельный вес 2,99 г/см3 при 20°С (легкий металл), плавится при 1539°С, кипит при 2727°С, хрупок, слабо парамагнитен.

Скандий не так редок, как рассеян…

Почти полвека потратили ученые на выделение элемента № 21. Почему это произошло? Содержание скандия в земной коре составляет 2,240-3%. Это значит, что в земле его немного меньше, чем свинца, но почти в 500 раз больше, чем ртути. Однако и ртуть, и свинец имеют собственные руды; в состав некоторых минералов они входят в количестве до нескольких процентов, а скандии распределен по земной поверхности так, будто природа решила сделать его вездесущим, но неуловимым.

Наиболее богатый скандием минерал — тортвейтит — один из редчайших минералов. Самые значительные месторождения тортвейтита расположены на юге Норвегии и на Мадагаскаре. Насколько «богаты» эти месторождения, можно судить по таким цифрам: за 40 с лишним лет, с 1911 по 1952 г., на норвежских рудниках было добыто всего 23 кг тортвейтита. Правда, в последующее десятилетие в связи с повышенным интересом к скандию многих отраслей науки и промышленности добыча тортвейтита была предельно увеличена и в сумме достигла… 50 кг. Немногим чаще встречаются и другие богатые скандием минералы — стерреттит, кольбекит, больцит.

Зато в сотых и тысячных долях процента этот элемент встречается и в железных, и в урановых, и в оловянных, и в вольфрамовых рудах, и в низкосортных углях, и даже в морской воде и водорослях. Несмотря на такую рассеянность, были разработаны технологические процессы получения скандия и его соединений из различных видов сырья. Вот как выглядит, например, один из способов получения окиси скандия, разработанный чешскими учеными.

Первая стадия — обжиг отходов обработки вольфрамовых руд. При этом выжигаются летучие компоненты. Твердый остаток разлагают концентрированной серной кислотой, добавляют воду и аммиаком осаждают из раствора гидроокись скандия. Затем ее высушивают и прокаливают в газовой печи при 600-700°С. В результате получают светлорозовый порошок окиси скандия с довольно значительными примесями твердой кремневой кислоты и различных окислов, в первую очередь окиси железа. Эти примеси можно удалить, растворяя порошок в чистой соляной кислоте с последующим выделением разных фракций. Кремневую кислоту удаляют с помощью раствора желатины, а образовавшееся хлорное железо — методом эфирной экстракции. Затем следует еще серия операций, в которых участвуют различные кислоты, роданистый аммоний, вода, эфир. Снова выпарка, промывка, сушка. Очищенную окись скандия еще раз растворяют в соляной кислоте и щавелевой кислотой осаждают оксалат скандия. Его прокаливают при 1100°С и превращают в окись.

Получение металлического скандия из окисла — не менее трудоемкий процесс. По данным Эймской лаборатории США, наиболее целесообразно превратить окись скандия во фторид. Этого достигают, обрабатывая ее фтористым водородом или бифторидом аммония NH4F-HF. Чтобы переход Sc2O3 в ScF3 был полным, реакцию проводят дважды.

Восстанавливают фтористый скандий в танталовых тиглях с помощью металлического кальция. Процесс начинается при 850°С и идет в атмосфере аргона. Затем температура повышается до 1600°С. Полученный металлический скандий и шлак разделяют при переплавке в вакууме. Но и после этого слиток скандия не будет достаточно чистым. Главная примесь в нем — от 3 до 5% тантала.

Последняя стадия очистки — вакуумная дистилляция. Температура 1650-1750°С, давление 10-5 мм ртутного столба. После окончания операции в слитке будет около 95% скандия. Дальнейшая очистка, доведение скандия до чистоты хотя бы 99% — еще более сложный многоступенчатый процесс. Несмотря на это, ученые идут все дальше, стремятся достигнуть максимальной чистоты редкого металла, изучают свойства его соединений, разрабатывают новые методы их получения. В последнее время важное значение приобрело попутное извлечение скандия из урановых руд.

О том, как стремительно растет интерес к скандию, можно судить по количеству книг, брошюр и статей о нем и его соединениях. Если в 40-х годах прошлого века всю мировую литературу по скандию можно было буквально сосчитать по пальцам, то сейчас известны уже тысячи публикаций.

Источники

  • https://jgems.ru/metally/skandij
  • https://ChemicalStudy.ru/skandiy-svoystva-atoma-himicheskie-i-fizicheskie-svoystva/
  • http://www.kontren.narod.ru/x_el/info21.htm
  • http://himsnab-spb.ru/article/ps/sc/
  • https://natural-museum.ru/chemistry/%D1%81%D0%BA%D0%B0%D0%BD%D0%B4%D0%B8%D0%B9

Понравилась статья? Поделиться с друзьями:
Сайт каталог о камнях / gorodgranit